
Purdue University
Purdue e-Pubs

Computer Science Technical Reports Department of Computer Science

1990

Adaptability Experiments in the RAID Distributed
Database System
Bharat Bhargava
Purdue University, bb@cs.purdue.edu

Karl Friesen

Abdelsalam Helal

John Riedl

Report Number:
90-972

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Bhargava, Bharat; Friesen, Karl; Helal, Abdelsalam; and Riedl, John, "Adaptability Experiments in the RAID Distributed Database
System" (1990). Computer Science Technical Reports. Paper 825.
http://docs.lib.purdue.edu/cstech/825

http://docs.lib.purdue.edu
http://docs.lib.purdue.edu/cstech
http://docs.lib.purdue.edu/comp_sci

ADAPTABILITY EXPERIMENTS IN TIlE RAID
DISTRIBUTED DATABASE SYSTEM

Bharat Bhargava
Karl Friesen

Abdelsalarn Hela)
John Riedl

CSD-TR-972
April 1990

Adaptability Experiments in the RAID Distributed
Database System1

Bharat Bhargava
Karl Friesen

Abdelsalam Helal
John Riedl

Department of COlnputer Sciences
Purdue University

West Lafayette, IN 47907
(317) 494-6013

1This research is snpported in part hy a grant from AIRMICS, and National Science Foundation
grant IRI-8821398

Abstract

Adaptable systems can improve reliability and performance by allowing dynamic
reconfiguration. We are conducting a series of experiments on the RAID distributeel
database system to siudy the cost and performance impHcations of providing static
and dynamic adaptability, and for increasing the availabiliiy of daia iiems. Our stud­
ies of the cost of our adaptable implementation wefe conducted in the context of the
concurrency controller and the replication controller. The experimentation with dy­
namic adaptability focuses on concurrency conlrol, and our examination of the costs of
providing greater data availability studies thf! replication control and atomicity control
subsystems of RAID. We show that for concurrency control and replicatioll control,
adaptable implementations can be provided at costs comparable to those of speeial pur­
pose algorithms. We also show that for our concurrency controller dynamic adaptability
can result in performance benefits and that system reconfiguration can be accomplished
dynamically with less cost than stopping the system, performing reconfiguration, and
then restarting the syslem. In some cases, reconfiguration could be performed with­
out aborting any transactions. We demonstrate some costs associated with increasing
availability through replication control methods and use of a three-phase commil proto­
col. A system that can dynamically change to algorithms that increase availability can
result in a 25-50% performance improvement over systems that continuously employ
the algorithms that provide tIle better availallility. We show that the algorithms se­
lected for replication control can significantly impact the time required fOf transaction
commilmeul.

1

Contents

1 Introduction 3

2 Experimental Infrastructure 4
2.1 Adaptability Features in RAID 5
2.2 Benchmark Data 6
2.:3 Adioll Driver Simulator 8
2.4 Open versus Closed Experiments 10
2.5 Experimentation with Restart Policies 11
2.6 RAID Experimental Procedure 12

3 Experiments in Adaptability 15
:3.1 Experiment I: Cost of Adaptable Implementation 16

3.1.1 Statement of The Problem 16
:1.l.2 Procedure 16
:1.l.3 Data... 16
:3.1.4 Discussion 19

:3.2 Experiment II: Cost and Benefit of Dynamic Adaptability 19
:3.2.1 Statement of The Problem]9
:3.2.2 Procedure 19
3.2.:1 Data............ 20
:3.2.4 Discussion......... 23

:3.:3 Experiment HI: Cost Attributable to Increased Availability. 25
:3.:3.1 Statement of The Problem 25
:3.:3.2 Procedure 25
3.:3.:3 Data............ 25
:3.:3.4 Discussion......... 25

:3.4 Experiment IV: Effect of Replication Algorithms on Commit Performance. :30
:3.4.1 Statement of Tbp, Problem ;30
:1.4.2 Procedme :30
:1.4.:1 Data... 30
;3.4.4 Disf:nssion 30

4 Conclusion 32

2

1 Introduction

Adaptability and reconfigurability are needed to deal with the changing performance ami
n~liability requirements of a distributed system. An adaptable system can meet a variety
of application needs in the short term, and can take advantage of advances in technology
over the years. There are many aspects of adaptability that have beell studied. The is­
sues surrounding adaptable systems include the performance costs of utilizing an adaptable
implementation, the costs of dynamic adaptation, and the problem of deciding when to per­
form system adaptation [BRSga]. In addition, there are questions regarding the selection
a good mix of algorithms for a given transaction stream, and how to perform dynamic rc­
configuration when site failures and network partitions occur. We are conducting scientific
experiments on the RAID distributed database system that focus 011 the performance costs
of providing .an adaptable implementation, specific costs of dynamic adaptability and costs
attributable to increased data availability.

The remainder of this section is devoted to a brief description of RAID. RAID is im

experimental distributed database system [BR89b] developed on SUN workstations under
the UNIX operating system. RAID has proven useful in supporting experiments ill r:om­
munication [BMR87, BMR91), adaptability [BMRS9j, and transaction processing [BRS9b].
However, several new features were desired to support extensive experiments ill adaptability
and reliability. To achieve these goals the RAID group has changed and re-implemented the
control Oow for transaction processing, and created a second version of the system called
RAID- V2. Version 2 has the same principles and goals as version 1, but takes advantage
of the lessons learned from the original RAID implementation to offer improved support for
adaptabil-ity and reliability. The details of version 2 call be found in [BFH+90].

There are six major subsystems in RAID-V2: User IlItcrfaC(~ (UI), Action Driver (AD),
Access Manager (AM), Atomicity Controller (AC), Concurrency Controller (CC), and Repli­
cation Controller (RC). Figure 1 depicts the latest version of the RAID I system.

The major differences between RAID-VI and RATD-V2 are:

• On-line replication control

• Facilities for partial replication

• On-line concurrency control

• Improved flow of control for adaptability

• Use of XDR to support communication in a heterogeneous system

I In the rest of the paper RAID will be used to mean RAID-V2. RAID-V2 will be IIsed only for f'mphasis
or to improve clarity.

3

Site i

RC

AC AC

Site j

RC

Figure 1: Communication paths in RAID- V2.

There are three other projects that facilitates experimental work in our laboratory. Mini­
Ri\ID [BNSS8j allows the prototyping of new ideas prior to their implementation in RAID.
S8th [HSBS9j is a system that supports research in quorum-based replication methods. Push
[BMRS9] is a utility that allows users to implement kernel-level services to enhance database
performance. Other academic experimental systems that have been developed include Lo­
clls/Genesis [PWS5, TWPWPS5], Camelot [S+86], Argus [LC.JS87], the V distributed system
[Che88], and the Synthesis kernel [PMI88].

In section 2, we describe our experimental infrastructure. This includes discussion of
our benchmarks, transaction restart policies, and procedures for running experiments. In
section a, we report our findings on the costs that must be paid to use an adaptable imple­
mentation using the concurrency controller as an example. Vve also explore the benefits of
dynamic adaptability in the concurrency controller. Finally, we measure the costs incurred
by using methods which increase the availability of data, comparing different quorum meth­
ods in the replication controller, and different commit protocols in the atomicity controller.
In section 4, we summarize our conclusions and outline future experimental work.

2 Experimental Infrastructure

III this section we describe the experimental infrastructure of the RAID project at Purdue
University. The Raid laboratory has five Sun a/50s, and four Sun SparcStation-ls, all with
local disks connected by a 10Mb/s Ethernet. The SparcStatiolls were aquired recently so

4

some of the reported experiments were done on Sun 3/50s. Measurements are facilitated
by microsecond resolution timers that were obLained from Zytec Corporation. Adaptability
features in RAID make it possible to test differenL algorithms and implementation techniques
under the same conditions using the same benchmarks. A single independent variable call be
chosen, and can be varied over a range of values while the rest of the system remains constant.
For instance, many different replication controllers can be tested with the same atomicity
contro]]er, concurrency controller, and access manager, and under the same workload. This
provides a fair comparison between the performance of the different implementations. In tlw
following subsections, we discuss the benchmarks for distributed databases that we developed
by extending the DebitCredit benchmark [A+S5]. We outline the action driver simulator
which parametrizes and applies the benchmark Lo the RA TD system. 'We also describe the
transaction restart policy and its effeds on the stability of experiments. Finally, the RA IT>
experimental procedure is detailed.

2.1 Adaptability Features III RAID

Three of the RAID servers have built in adaptability features - the concurrency conLro]]er
(CC), the replication controller (Re), and the atomicity controller (AC). Each of these servers
implements a number of algorithms and has the mechanism necessary to COllvert from olle
algorithm to another.

The CC implements five algorithms for concurrency control: timestamp ordering (T/O),
two-phase locking (2PL), generic timestamp ordering (gen-TjO), generic locking (gen-2PL)
and generic optimistic (gen-OPT). The first two algorithms are implemented using special­
ized data structures, while the last three use the same general data structures. In the case
of TjO and gen-T/O, the implementations enforce the sallle concurrency control policy, but
OIle uses a generic data structure specifically designed for adaptability, while the other uses
an ad hoc data structure designed specincally for T10.

The RC also implements several algorithms to perform replication control. Among these
are the read-one-write-all (ROWA) algorithm and a quorUJll consensus (QC) algorithm. In
QC, quorum parameters can be chosen to have a quorum version of ROWA (QC-ROWA), a
quorum version of read-same-as-write (QC-RSvV), and a quorum version of read-all-write-one
(RAWO). Quorum consensus methods can model many of the standard replication control
policies, and all such methods have a comIllon structure.

The AC implements centralized two-phase commit (2PC) and centr;:tlized thn~(-~-phase

commit (3PC). Transactions in the AC are independent of each other, so the selection of a
commit protocol can be performed on a per-trallsaction basis. In practice, this selection is
done by the RC, which may elect to utilize the AC default protocol.

5

begin
npdate teller <teller-id> by <value>
update branch <branch-id> by <value>
update account <account-id> by <value>
insert history <teller-jd> <branch-icl> <account-jd> <value>

Figure 2: The basic DebitCredit transadion.

2.2 Benchmark Data

Several benchmarks for database systems exist [BDT83, A+85]. However, for distributed
database systems there are no well-accepted benchmarks. The data and the workload can
be distributed among the sites in many different ways, especially ill systems that support
data replication. Distributed systems vary widely in their model of transactions, including
support for concurrency control, reliability, and replication. Designing general benchmarks
for dirrcTP-l1t systems presents a difficult problem for benchmark developers.

DebitCredit Benchmark The DebitCredit (or TPI or £'1'1) benchmark is described ill
[A+85]. DebitCredit is intended to be the simplest realistic transaction processing bench­
marIe There is ouly one [arm of DcbitCredit transaction, representing a simple banking
transaction. This transaction reads and writes a single tuple [rom each of three relations:
the teller relation, the branch relation, and the account relation. In addition, a tuple is
appended to a special write-only sequential history file describing the transaction. Figure 2
shows a DebitCredit transaetiou. The beuchmark requires that the entire transaction be
serializable and recoverable [BI-lG87].

The teller, branch, and account tuples are 100 bytes long, and the history tuples are
50 bytes long. Each te]]er, branch, and account tuple must contain au integer key and a
fixed-point dollar value. Each history tuple contains a teller, branch, and account id as well
as the relative dollar value of the transaction.

Extensions to the DebitCredit Benchmark The DebitCredit benchmark is designed
for a variety o[!'lizes, with the database size decreasing with the strength of the transaction
processing sY!'ltem. Table 1 summarizes the sizes of the various relations for different trans­
action processing speeds. DebitCredit is designed so the branches and, to a lesser extent the
tellers, form a hot spot in the database. In our experiments we wanted to vary the hot-spot
size, so we chose to make all relations the same size and explicitly choose a hot spot size

6

Table 1: Sizes of DebitCredit relations.

TPS branches tellers accounts
> 10 1000 10,000 10,000,000
10 100 1,000 1,000,000
1 10 100 100,000
<I 1 10 10,000

for each experiment. Since the experiments were perfOl"med on low-cnd machines we lise the
database size for one transaction per second, and make all three relations 100 tuples.

The DebitCredit benchmark specifies that the database system should perform data-entry
from a field-oriented screen. In the laboratory environment, we instead simulate transactions
by randomly generating four values: teller id, account id, branch id, and relative value.

In order to obtain a greater variety of transaction streams, we extended the DcbitCredit
benchmark to support changes in transaction lfmgth, percent of accesses that are updates,
and percent of accesses that are to hot-spot items. Each trawmcLion consists of some number
of actions, each of which accesses a random tuple of one of the three relations. The access
is either an update of the balance field or a select on the key field. Some percentage of
the updates are directed to a hot-spot of the relation, which is the nrst fcw tuples of that
relation. Each transaction that performs at least one update ends with an insert to the
history relation.

V\Te built a transaction gcncrator to generate a stream of random DebitCredit transactions
based on the ronowing input parameters:

• transactions: number of transactions to generat(~.

• branches: number of tuples in branch relation.

• tellers: number of tuples in tellers relation.

• accounts: number of tuples in accounts relation.

• average length: average number of actions in a transactioll.

• probability long: probability that average length is used for a particular transaction.
Otherwise one-fifth average length wi11 be used. The default for the probability is one,
which creates a unimodal distribution around average length. Transaction length is a
normal distribuLion, with standard deviation 1;:3 tllP. lp.ngth.

• update percent: percent of the actions that are updates rather than just selects.

7

• hot-spot size percent: percent of the database comprising the hot-spot. Each action
is checked to see if it should be a hot-spot actioIl. If so, it accesses tuples number
[0 1 ••• 1 hot-spot size percent", n_tuples] for the chosen relation. Note that all relations
have the same bot-spot size.

• hot-spot access percent: the chance that an action all a relation will access the hot-spot
of that relation.

The transaction length is bimodal, in an attempt to reflect real systems with a mix of large
and small transactions. The standard deviation was chosen so that zero is three standard
deviations away from the average, to decrease the number of times the normal distribution
hilS to be truncated to avoid zero-length transactions. The hot-spot is over a fixed llUTllbcr
of tuples across three relations. Since RAID does tuple-level locking, this is the same as
having ,L single hot-spot ill one of the relations.

This modified version of the DebitCredit benchmark is no longer restricted to a real
banking application as in the original benchmark. However, it uses the same relations and
the same types of actions as the original benchmark, and has the advantage of supporting
trausactioll streams with heterogeneous characteristics.

Data Distribution RAID supports a wide range of distributions of data among sites, with
differing transaction processing characteristics. Since the benchmarks are created for single­
site database systems we measured a variety of different data and workload distributions.

The key in the data distribution is the degree of replication. The range is from full
replic<Ltio11 1 ill which each site hClS a copy of all data, to no replicatio1l 1 in which only one
copy of each item is shared among the sites. Most real systems are likely to use something
in between, balancing the need to have copies in case of site failures with the performance
cost of performing operations on multiple sites. In our experiments we used both partial and
full replication.

2.3 Action Driver Simulator

The AD simulator is used -in place of the RAID AD- to provide an easily controllable
workload. It processes transactions in a special benchmark language. The commands in
the language all consist of a single line starting with a verb and ending with a number of
arguments. The verbs are begin, end, update, select, insert, update-reI, and delete.
Figure ;3 shows the arguments for the verbs. Each verb except for begin and end takes a
database id and a relation id as its first two arguments, so these are left out of the table.
The meaning of the verbs are:

• begin: begin a transaction.

8

Verb arguments
update <select col> <select key> <update col> <update value>
insert <new tuple value>
delete <select col> <select key>
select <select col> <select key>
begin none
end Ilone

Figure 3: Simple benchmarking language

• end: begin commit processing for a transaction.

• update: reads tuples from the database that match a key value in a particular C01Ulllll.
It then changes the value of the attributes of those tuples in some other column. update
and update-reI are only supported for integer and float columns.

• update-reI: (relative update) same as update: except that the vahle is added to the
attribute ill the update column rather than just replacing the old value.

• insert: insert a tuple into the relation.

• delete: retrieve all tuples from a relation that match a key value lTl a particular
column, and delete them.

• select: retrieve all tuples from a relation that match a key value III a particular
colul11n.

Trallsactions are specified by enclosing a number of other actions in a begin/end pair.
All of the transactions from the DebitCredit benchmark can be expressed in this hlllguage.

The AD simulator accepts a parameter (3 LhaL specifies the inLer-arrival rctte of the trans­
actions. (3 is used as the average for an exponential random variable. VVlH~ll an arrival
occurs the AD parses the next transaction from the inpllt file, creates an AD LrausacLion
data structure for the new transaction, and begins executing it by issuing commands to the
Re. \'Vhen a transaction completes, statistics are compiled on its execution profile and its
data structure is returned to a common pool. "\Then the file is empty the AD simulator waits
for the active transactions to complete, and prints its statistics.

The AD runs a timer for each transaction. It maintains a delLa list:2 of alarms of various
types. Depending on the state of the transaction, the timer can be of type life-over, restart,

2A delta list is a list of times in increasing distance from the present [Com84]. The time for an element
tells how long after the preceding element an alarm should occur.

9

or ignore. Life-over LimeouLs cause a transaction to abort and restart3
. These timeouts arc

Ilsed to resolve deadlocks and to handle lost messages. Restart timeouts cause a previously
aborted transaction to restart. Ignore timeouts are used to safely disable the alarm that is
curn~ntly active. Removing the alarm from the head of the alarm queLLe is not safe, since
the alarm signal may already be on its way. Arrivals are also handled with special alarms
of type arrival that are not associated with a transaction. The life-over alarms represent a
transaction timeout, presumably because of deadlock or lost messages. The timeout interval
is a constant Dumber of milliseconds per action, chosen to maximize system throughput.

Control Relation Some of the experiments require that algorithms be clmnged dYllami­
cally while RAID is processing transactions. To support dynamic adaptability, each RAID
database has a special control relation. This relation contains one tuple for each site, con­
taining on('. column for each server type. Each attribute is an integer representing the staLe
of a parLicular server on a particular site. The interpretation of the integer is different for
each server type, but in general the integer specifies the algorithm being executed by the
server. The control relation is write-only\ and is updated by special control transactions
issued by the AD. Each of these control traw;;aclions accesses only the control relation.

The control transactions are processed like normal transactions until they are committed.
At this point, each server checks to see if the transaction is a control transaction for that
server. If so, the server selects the integer from the coluTllll corresponding to the server's
logical site iel, and interprets it independently. The control relation is fully replicated, and is
set up by the replication controller so that writes occur on all sites. Since control transactions
are serialized just like other transactions, there is automatic protection against multiple
operators introducing an inconsistent state. Furthermore, control transactions synchronize
Lhe adapLation in serialization order.

Control transadions originate in the AD simulator by normal update transactions in
the input file that use the tuple id instead of a key to seled tuples. Usually each control
transaction writes all tuples in the control relation, changing the value for one server on all
sites.

2.4 Open versus Closed Experiments

The AD simulator is set up to run two basic types of experiments. In open experiments the
transaction inter-arrival gap is varied to control the system load. In closed experiments the
multiprogramming level is fixed. When one transaction completes another is started. Open
experiments are more representative of the type of load found in on-line transaction systems.

31f the transaction is already in c.ommitment it may not be abortable. In this case, the AC takes the
abort request as a timeout and retries the commit request for the transaction.

4 Adually, the relation {'.an be read to learn the state of the server during debugging, but its value is not
llsed by til(' scrVCTS.

10

Arrivals are separated by an exponential random variable, representing, for instance, arrivals
of customers to a teller. Actual applications probably fall somcwhere in between these
models, behaving like an open system when the load is low, and behaving like a closed
system when the load is high.

We ran a series of open and closed experiments Oil concurrency controller and compared
the information retnrned, to the accmacy of the confidence intervals_ The results of the
closed experiments were consistently easier to understand and interpret than the results of
the open experiments. The problem is that at a high degree of concurreJl(:y all open !'iystf'm
is very unstable, and at a low degree of concurrency the choice of concurrency controller does
not matter since there are very few concurrency conilids [CS841_ In summary, it is difficult
to maintain a high degree of concurrency over a range of independent variable values in an
open experimeTlt, which makes it dirrkult to gather experimentally meaningful results.

Our experiments, described in section :3 are performed on a dosf'.d system. For the
concurrency control experiments using a closed system makes maintaining a high degree
of multi-programming easier, which allows a better exploration of the differences between
COllcurrency controllers over a wide range of parameter values. For the atomicity control
and replication control experiments using a closed system makes it casier to maintain a mn­
stant low multi~programming level without running as many pilot experimcnts to establish
a reasonable inter-arrival gap.

2.5 Experimentation with Restart Policies

In most applications, the successful completion of trallsaetiolls is required. III such applica­
tions, transactions aborted by the transaction manager must be retried lllltil they sncceed.
III order to model such behavior in our experiments, trctnsaetiolls aborted by the system were
restarted by the AD.

Performance is sensitive to the restart policy used, since restart occurs most often during
high periods of conflict, and restarting transactions raises the degree of multiprogramming.
Also, if transactions are restarted too quickly they are likely to again conflict with the same
transactions that caused the original restart. In RAID we delay restarts to improve the
chance that the conditions that caused the restart will have changed when the transaetiOlI
restarts.

We studied eight different restart policies based on three binary attributes: rolling average
versus total average response time for tbe mean restart delay, exponential random versus
constallt delay, and ethernet backoff5 versus non-increasing backoff. The total average used
the average response time since the system was started as the mean restart delay. By
contrast, rolling average estimated the average response time of the last few transactions.
Exponential ransom delay used the average response time as the mean of an exponential

5We call this cthcrnet backoff rather than exponential backoff to avoid the Ilame conflict with exponential
random.

11

random vmlable used to compute the actual restart delay. Constant delay uses the average
response time directly. The ethernd backoff policy doubles the restart delay after each time
an individual transaction is aborted.

We found that using the combination of BOll-increasing backoff, rolling average and ex­
ponential random delay methods resulted in a restart policy that was responsive and that
maintained system stability. This is tl}(~ restart policy that we used for all of our other
experiments.

2.6 RAID Experimental Procedure

All experimcllts are run early in the morning, when network activity is low. All of the
RAID machines are first rebooted to ensure that the experiments will nUl on a "clean"
system. Shortly after a machine reboots a user cron° job runs a shell script 7 that sets up
t1](~ f'.xperiments. This shell script reads a special directory and executes any bencllmark files
there. Each line of a benchmark file represents a complete invocation of RAID to process
transactions from a temporary transaction file. After a RAID instance terminates, the data
from the run is collected and stored. Figure 4 shows the logic of the experiment script,
figure!) shows the logic of the script that runs a single experiment, figure 6 shows the logic
of the script that runs dynamic adaptability experiments, and figure 7 shows the logic of the
script that runs a single instance of RAID.

The raw data is processed each morning with an AWl(program [AKW]. This program
scans the directory where the data files are stored, building tables of information containing
counts of all messages sent between the servers. These tables are checked by the program
for consistency to detect anomalous behavior, such as lost messages or excessi ve numbers of
ahorts. Finally, one line is printed for each experiment. This line summarizes the perfor­
mance characteristics of the system as a whole and the interestillg statistics for each of the
HAID subsystems.

All I/O activity during an experiment is directed to the local disk. Such activity con­
sists primarily of databCl.se accesses and updates, and writes to the transaction log. Pilot
experiments in which some data were directed to a shared file server were successful when
only about half the machines (4-5) were involved in experiments, but had poor confidence
intervals when more machines were active. Each server also keeps a log of statistics which is
written during system startup and system termination. Server logs do not impact transaction
processing performance and therefore are directed to the file server.

On the Sun :3/50s care was taken to make sure that the screen was blanked whell the
experiments were run. The video monitor uses the same bus as the CPU to access memory,
resulting in approximately a 25% slowdown when the screen is not blanked.

Beron is a Unix service that arranges for pro('.(.'SS0S to be invoked al specified times.
7 A shell script is a program in the Unix command interpreter's (the shell's) language.

12

• Try to start an oracle on the designated oracle site. If there already IS an oracle on
that site, the llew oracle will find it and terminate during startnp.

• Umnouut all remote-mounted file systems. This step reduces the possibility of remote
machine failures affecting the experiu1811ts.

• Mount the two file systems needed for the experiments.

• Find the benchmark directory for this machine on this day. If it IS empty or non­
existent, terminate.

• Look for an initialization file (name "Initialize") in the benchmark directory. If there
is such a file, rUll it. Tlwse files initialize the database, usually by running dbreset to
clear all relations and then loading freshly generated tuples.

• For each benchmark script in the benchmark diredory (rcr:ognized iL..'l a file nanw with
a ".bm" suffix):

For each line in the file:

* invoke the DebitCredit script with the specified arguments.

• Re-mount the remote file systems.

Figure 4: Start Experiment Script Logic

• Generate a transaction benchmark according to the parameters of the experiment,
using the transaction program.

• Write a command file for the AD simulator that sets its parameters (arrival gap,
timeout, maximum concurrency, restart bac:kofr method, and open/closed experiment
type).

• Invoke the RAID script, handing it additional parameters and the name of the com­
mand file for tbe AD simulator.

Figure 5: DebitCredit Script Logic

• Generatp- a short transaction benchmark according to the paramders of the experiment l

using the transaction program.

• Prepend a control transaction to convert to the initial COllcurency control method to
the trallsaction benchmark file.

• Append a control transaction to convert to the final concurrency control method to
the tr<tl1!-laetiOll benchmark file.

• Append another short transaction benchmark to the end of the transaction benchmarli
file to keep the load steady while conversion is occuring.

• vVrite a command file for the AD simulator that sets its parameters.

• Invoke the RAID script, handing it additional parameters and the Tlame of the com­
mand file for the AD simulator.

Figure 6: Converting DebitCredit Script Logic

• Choose a unique RAID instance number for this experiment.

• Clean orade entries for the chosen RAID instance.

• Start the RAID instance.

• Busy-wait until two consecutive oracle list commands report the same nwnber of regis­
tered servers. (An alternative would be to check the configuration file for the database
to find ouL how many siLes are involved.)

• Check the server log files to make sure they all intialized correctly.

• Run the AD simulator usillg the specified benchmark trallsaetions.

• Terminate Lhe RAID instance, and clean up the oracIe.

• Move the server log files to an archive directory, timestamping them with the date and
time of the experiment.

Figure 7: RAID Script Logic

14

We scanned the system log files to learn about automatic system activity that might
disturb the experiments. The experiments were scheduled to avoid nightly and w~p.kly dis­
tribution of software to the workstations, and to be after the uightly file system backups.

Each experiment involved running 250 transactions 011 the system. 250 was chosen as a
reasonable number that yielded approximately steady-state measurements despite the start­
up and tail-off times. There was little difference between running 250 transactions aml
running 300 transactions. vVe did not run higher numbers of transactions to economize Oll

computing resources.
Experiments were run all the extended DebitCredit benchmark using nve indepcndcnt

variables:

• transaction length: the number of actions in a transaction.

• fraction updates: the fraction of the actions that are wri tes.

• inter-arrival gap: the delay between the arrival of one transaction <LUll the arrival of
the next for open experiments.

• multi-programming level: the number of transactions running at a given time.

• hot-spot access fraction: the fraction of accesses that access the hot-spot.

• hot-spot size fraction: the fraction of the database that comprises the hot-spot.

For each of these independent variables, we measured the performance of the system in terms
of the dependent variable throughput, expressed ill transactions per second.

Unless otherwise indicated, experiments were rUIl on a syst(-~m th;:Lt ns(-~d (l tinwstamp
order concurrency controller, a read-one-write-all replication control1cr, and a two-phas~

commit protocol. All experiments are "closed" with a fixed degree of multiprogramming.
The degree of multiprogramming was set to a small number (;3) to minimize serialization
conflicts. Aborted transactions were restarted after a delay that was computed using an
exponential random distribution with the rolling average of transaction response time as the
mean. In each experiment the workload was provided by a single AD running on olle of
the sites. Multiple workload experiments would also be interesting, but an~ more difllcult to
synchronize and parameterize.

3 Experiments in Adaptability

This section presents the details of our experiments ill distributed systems adaptability. We:
describe four experiments on adaptability. The first experiment llleasures til('. overhead of an
adaptable implementation in the concurrency controller and replication r:olltroll~r subsys­
tems of RAID. The second experiment identifies a set of conditions under which concurrency

15

control adaptation should be performed. The third experiment measures the cost o[repli­
cation and atomicity control methods that increase availability. The fourth experiment
explores the performance impact of the algorithm employed by the replication controller on
the atomicity controller. The choice of servers for a given experiment was based on the
current infrastructure available in RAID and the potential to obtain meaningful data.

3.1 Experiment I: Cost of Adaptable Implementation

3.1.1 Statement of The Problem

An adaptable design is more complicated than a non-adaptable design. This experiment
measures the difference in performance between the adaptable and the non-adaptable im­
plementations.

3.1.2 Procedure

We conducted this experiment on the CC and the RC subsystems of RAID. Of the five concur­
rency controllers implemented in the RAID CC, two are implementations of the timestamp
order (1'/0) policy. These implementations enforce the same concurrency control policy, but
olle uses a generic clata structure specifically designed for adaptability, while the other uses
an ad hoc data structure designed specifically for T /0.

Similarly, the replication controller can use a non-adaptable Read-One-Write-All (ROWA)
policy, or a Read-One-Write-All policy based on quorum consensus (QC-ROWA).

To compare the cost of using adaptable implementations, we measured the non-adaptable
'1'/0 algorithm against the adaptable 1'/0 method varying the size of the database hot­
spot. The experiment was run on a single-site database with a small hot-spot to produce a
significant degree of conflict.

For replication control, we compared the performance of ROWA and QC-ROWA varying
the proportions of read and write actions. A four site database was used with the branch
and teller relations replicated on three sites each, the account relation replicated all all rom
sites, and the history relation replicated on two sites. The copies were arranged so that each
site contained three copies.

3.1.3 Data

Figure 8 shows the throughput [or the two concurrency controllers as the size of the hot
spot increases. Figure 9 shows the response time for the two replication control methods as
update percent increases. The 90% confidence intervals for both sets of data were less than
10% of the data values. All data shown is from systems running on Sun 3/50s.

16

/\
/ 'x?<-- --/r-.< '><-

I

'" ~ --/
v f:

-"\
I

Throughput ;L(TIsec) \
A /

T/O. .8
~gen-T/O 6 / '8'

gen-2PL EB lS- --£{

gell-OPT x
)11

;:rr
h

.6)Jfr

fr-d''OJ

/!l-- -er-4el-- -%'

II 12 J:l 11 15 16 17 18 19 20
Hot Spot Size (Pernmt)

Figure 8: Performance of Adaptable Concurrency Control Implementation

17

5000

"­, ­,,,,,,-.,
-1&- __ '$...

,,-,,,,,,

I

.,­,,,,,,
¢,,,,,,,,, ~

• I
2000

4000

:3000

Response
Time
(ms)

QCROWA.
QCRSW 0

ROWA ffi

10 20 ao 40 50 60 70 80 90 100
Update Percent

Multiprogramming Level :3

Figure 9: Quorum Consensus Replication Control Performance

18

3.1.4 Discussion

To the limits of the experiment there were no discernible differences in performance between
the adaptable implementations and the specialized implementation. The reason is that the
diffe.rences in execution time between the two algorithms are small in comparison to the
execution time required to process a traIlSaetiOlI. The algorithm selected ba.s much mon"
impact on performance than different implementations and execution speed of the same
algorithm.

For the replication control data, we compare the response time for the two replicati()]l
methods, since there was little difference in the throughput. Once again, we observe that the
cost of the adaptable method is noL significalltly different from the cost of the llon-adi:Lptablc
method. In the case of concurrency control and replication control, a carefully designed
adaptable implementation can perform as well <L.'i a non-adaptable implementation.

3.2 Experiment II: Cost and Benefit of Dynamic Adaptability

3.2.1 Statement of The Problem

Dynamic adaptability allows the operator of a system to change rTOm onc algorithm to
another while the system is running. This experiment examines the cosL of adaptation to
determine the effectiveness of particnlar dynamic adaptations.

3.2.2 Procedure

This experiment was performed on the CC server. The item-based generic state descrihed ill
[BR89a] was used to implement three concurrency controllers: generic 2PL, generic T/0, a11(1
generic OPT. Then four conversion routines were written to dynamically convert from generic
2PL to and from each of generic T /0 and gem~ricOPT, while preserving correctness. In order
to preserve correctness aborts are sometimes necessary. A special benchmark wa!'> set up to
test these conversion routines. This benchmark first ran a control transaetiOlI to convert to
the initial concurrency controller, then ran 50 transactions to get the system to steady staLp-,
a.nd then ran another control transaction to convert to the final concurrency controller.
Finally 20 more transactions were run to ensure that the second cOlltrol transaction ran
ullder normal conditions. The multiprogrammjug level was sel to 20 ror these experiments
to increase the number of transactions to be checked ror abort. The number of aborts
required during adaptation are reported to represent the cost of dynamic adaptation.

Measuring only aborts excludes the computation cost of the actual conversion from one
method to another. In all methods except 2PL to OPT (which has 110 COlI version cost) this
cost is proportional to the number of elements of the read sets or aetiv(~ tr<Lllsactiolls. In
RAID this cost is a small fraction of transaction processing Lime.

19

The benefit, on the other hand, is sustained over time, aud -is ill the form of increased
throughput from running a bdter algorithm for the current transaction mix. A measure of
the net gain for dynamic adaptability is the amount of time required to make up for the
cost, a.<;sllming the transaction characteristics remain the same. Thus, we propose that the
cxpcdcd bTeak-even time be defined by

aborts during conversion
1 = ~-'-'C~==~===­

abort rateold - abort ratene,..

The numerator in this expression expresses the cost of the conversion in aborts. The
denominator has units aborts/second, and expresses the benefit of nmlllng the new algo­
rithm. The units of the result iUC seconds, and it expresses the i:tmOullt of time thc systcm
must run Witll the new method and the samp. transaction processing conditions to recover
the cost of conversion. An alternative expression for net cost of abort is to convert the cost
of conversion to throughput, and express the benefit in terms of the increased throughput
of the system after conversion:

:lo~s~t:....:tl~l:ro~u~g""h~p:u~t_d=u~r~il~lg,--,c~o~lI~v:e~r~sl:'0:1:1t=-
throughputnew - throughputo1d

Here throughput is expressed in transactions per second, and lost throughput during
conversion is computed by estimating the throughput cost of the aborts. Qne such estimate
is to subtract tlj(-~ number of whole transaction equivalents that were aborted. For instance,
OlW transaction 5COlllph~te <Llld OlW transaction ~ complete would be combined to make one
transaction equivalent.

In general, the former measure is easier to compute since the number of aborts during
cOllversioll is readily available, but the latter measure is a more accurate measure of the
actual estimate of the conversion cost, especially if a good estimate of the number of whole
transaction equivalents is available.

\Ne measured the number of aborts required for each type of conversion over a range
lw.nchmarks under a high degree of multiprogramming. -VVe measure the througllput of the
old and llew methods for each type of conversion. We compute the net cost of the conversion,
in seconds.

3.2.3 Data

The number of aborts required for dynamic conversion under a multi-programming level of
20, for a range of hot spot sizes are shown in figure 10. The relative confidence intervals for
this data are very large (in some cases as great as 100% of the data value), so the data should
not be interpreted as good indicators of the number of aborts needed for conversion for each
hot-spot size. However, in no case was more than three aborts needed during conversion,
alld for every hot-spot size the average number of aborts was no greater than two. Note

20

5

Convert
Aborts

:3

x,
,

, ',, ,
X

x
", ,

... oK f \, "
"",' \, , '

" ..

,,,,,,,,,-

"",,,,,,,,,,
*,,,,

,;..'---::-----~----­---@--",- @ ---@---@---@---@----@

", ,, ,, ,, ,, ,, ,, ,
--@--

2

I

o

TjO->2PL.
OPT->2PL x
2PL->OPT 0

2PL->TjO Ell

201918121110 13 1'1 l!i 16 17
HoL SpoL Size (Percent)

Figure 10: Concurrency Control Aborts during Dynamic Adaptability

21

Convert
Aborts

T/O->2PL •
OPT->2PL x

5

4

:1

1

o

,,,,,,,,,,,,,,,,,,,,,
, ", ,,,
:I<

x, ,, ,, ,,,,,,

1 :1 456 7
Transaction Length

8 9 10

Figure 11: Concurrency CouLrol AborLs during Dynamic Adaptability, Two Sites

22

that converting from 2PL to OPT and 2PL to '1'/0 never requires aborting a transaction.
The 2PL to OPT case never requires an abort because OPT uses Lhe same rules as 2PL,
but applies them aL Lhe end of the transaction. The 2PL to '1'/0 case IJev(~r requires an
abort in theory because committed transactions can be implicitly renumbered to have earlier
timestamps than all uncommitted transactions, thus avoiding all out-of-order timestamp
conflicts. Figure 11 shows similar data for a two-siLe RAID instance, with transaction length
as the independent variable. All the COllCUlTellCY controllers were converted to the new
method in a single control transaction. Agaill tllP. data is not consistent, but the maximum
number of aborts was eight, and the average is never much more Lhan five aborLs_

Figure 12 shows the net cost of dynamic conversion from generic 2PL to generic OPT,
assuming Lhat two transactions arc aborted during conversion and that the multiprogram­
ming level after conversion is 10. We use the throughput-based method of computing net
conversion cost, and assume that each aborted transaetioll was halfway completed.

3.2.4 Discussion

III order to invoke dynamic adaptation, a system manager must have some measure of the
benefit of adaptability versus the cost. In the case of the generic state adaptability used in
the previous experiment the cost is instantaneous, and is measured in number of aborted
transactions. A system manager reading figure 12 would look up the current hot-spot size and
read the number of seconds the system would have to stay at this hot-spot size before the cost
of converting to OPT would be regained. In this case he/she would be very likely Lo])(-'rf01"l11
the conversion, since less than one second is required to make up the lost transactions.

In all cases the cost of conversion was relatively low in number of aborts. This is to be
expected because only active transactions are candidates for abort using the generic state
conversion method, so even at a degree of multiprogramming of 20 there are at most 20
transactions that could be aborted. Note that the number of aborts required fol' generic
state adaptability is exactly the same as the number that would be required for converting
state adaptability. Converting state adaptability would have a higher complltation cost, but
the difference is unlikely to be as high as even one transaction execution time. Estimating
one extra lost transaction of cost during conversion still yields a net cost of less than Lwo
seconds for conversion. Suffix-sufficient state is harder to estimate, since conversion is not
instantaneous. However, the total cost of the conversion in that case is reduced through­
put for one trallsadlon length period. Except for systems with very long transactions, or
for conversions between two very differenL concnrrency controllers the cost of the reduced
throughput is likely to be less than the cost of the aborted transactiolls umler generic state
adaptability.

Dynamic adaptability of concurrency control is inexpensive. Even under a heavy load
Lhe cost can be amortized in less than one second if the new algorithm is a significant
improvement over the old algorithm.

23

;JO

Break-even
point

(seconds) 20

Dynamic
2PL->T/O L,
2PL->OPT x

Stop Start
2PL->T/O •
2PL->OPT <IJ

10

,'<3,,,
... q,---EB--- Et{

~ __ -<lJ---ElJ o, ,ill-___
~" \IY - - _ tir..... - ti9

-0 --'----,------,----,------,-,------r-,------r-,------r--,----
10 11 12 13 14 15 16 17 18 19 20

Hot Spot Size (Percent)

Figure 12: Net CosL or Dynamic Concurrency Control Adaptability

24

3.3 Experiment III: Cost Attributable to Increased Availability

3.3.1 Statement of The Problem

Many replication control methods and commit protor:ols provide increased availability at tIl("
cost of performance. This experiment compares Llw n~plication method l'cad-one-write-all
(RO\NA) against read-same-as-write (RSW) method. We also examine the performallce of
two-phase commit (2PC) and three-phase coIllmit ope).

3.3.2 Procedure

For replication control, we compared the performance of QC-ROWA and QC-RSvV, varying
the proportions of read and write actions. A four site database was used with the branch
and teller relalions replicated on three siLes each, the account relation replicated OIl all four
sites, and the history relation replicated Oll two siLes. The copies were arranged so that each
site cOlltained three copies.

To explore the cost of 2PC versus :3PC, a five site, fully replicated iustance of the standard
DebitCredit database was used. In the first data set, the proportion of updates ill l,]w

transaction stream was varied. In the second data set, the average transaction length was
the illdepelldent variable. Sillce the number of serialization conflicts increase with transaction
length, the size of the database hot-spot was increased to 40% to minimize such conflicts.

3.3.3 Data

Figure 9 compares the QC-ROWA and QC-RSvV protocols. 90% confidence intervals for
both experiments were less than 10% of the data values.

Figure 13 shows the throughput for 2PC and :3PC on a five-site RAID system, running
on Sun :3/50s. Figure 11 shows the average commit tiIlle [or the series of experiments. 90%
confidence intervals for both figures are less than 10% of the data values.

Figures 15 and 16 show the throughput and commit times for the same five site RAID
system with length as the independent variable.

3.3.4 Discussion

The QC-ROWA replicatiollmethod consistently performed better than the QC-i{SW method
in some cases as much as 25% better. III the cases where the percentage of update actions
is low, the differences between the two methods are not as significant. Most of the cost o[
QC-RSW is incurred by the additional reads that it must perform to ensun~ an increase in
data availability.

The difference in throughput for the AC wa.'> much less pronounced. Although :3PC COll­

sistently measured slightly higher, the difference between individual points is not statistically
significant. The difference in commit time, rcflcetillg the AC cost alone, is more pronounced,

25

2.5

2.25

2

1.75
Throllg1llmL

(T/sec)

2PC.
:3PC 0

1.5

1.25

.75

.5

,,

o 10 20 ;30 40 50 60 70 80 90 100
Ave-rage Percent Updates

Five Sites

Figure 1:3: Atomicity Control Throughput for 5-Site RAID, on Sun 3/50s

26

500

150

Mean
Commit

Time 400
(Illsec)

2PC.
350:lPC 0

300

250

200

1'..
I " /fr-~_",,€>

1'.. / ¥
/ " /

/ '"
/

P
/

/
/

/
I

I

f
I

I
I

J

o 10 20 :30 10 50 60 70 80 90 100
Av<:~rage Percent Updates

Five Sites

Figure 14: Atomicity Control Commit Time for 5-Site RAID , on SUll 3/50s

27

4

:3

Throughput 2.5
(T/sec)

2PC.
:3PC 0 2

1.5

1

.5

<\
\

\
\

~
\

\
\

\\
\

\
\
\r_ , ,

.....

1 2 3 4 5 6 7 8
Average Transaction Length

Five Sites

9 10

Figure 15: Atomicity Control Throughput for 5-Site RAID, all Sun 3/50s

28

800

700 G>--

Mean 600
Commit

Time
(msec)

2PC.
5003PC 0

"\ ,,,
'1,..-....---«.

, ""-/ ..., -0/
, -0/ --....-

400

300

1 2 345 678
Avel'age Transaction Length

Five Sites

9 10

Figure 16: Atomicity Control Commit Time for 5-Site RAID, 011 Sun a/50s

29

with :3PC requiring :30% to 50% marc time than 2PC. The lack of effect all throughput of the
commit protocol reflects the relatively low cOlltribution of distributed commitment to the
total transaction processing time. Systems that have lower transaction processing costs than
RAID will see a more significant effect on total throughput of running the 3PC protocol.

In summary, there is some advantage that could be accrued by a system that call utilize
more efficient methods (such as ROWA or 2PC) during normal transaction processing and
can still provide increased availability when it is needed. Systems witb relatively heavy­
weight transactions, like RAID, can use 3PC all the time for increased availability at little
cost. Systems with lighter-weight transactions may wish to build an adaptable commit
protocol that CiUI change between 2PC and 3PC as needed.

3.4 Experiment IV: Effect of Replication Algorithms on Commit
Performance

3.4.1 Statement of The Problem

In systems that may employ a variety of algorithms, there may be configmations where the
algorithms used by one subsystem Illay affect the performance of another subsystem. This
experiment measures the effect of replication algorithms on the time required to commit a
transaction.

3.4.2 Procedure

\~r(~ riLiI ROWA and QC-RAWO (read-all-write-one) on a four site, fully replicated database,
varying the fradion of actions that were updates. A two-phase commit protocol was used by
tlw AC, and generic locking was used by the CC. For both the ROWA and the QC-RA\VO
cases, we measured the average commit time spent by the AC server.

3.4.3 Data

Fignrc 17 shows the average commit time for the two replication cOlltrolmethods.

3.4.4 Discussion

For transactions where H~ad actions dominate (60%-100% reads), the ROWA protocol re­
quires less time Lo commit than the QC-RAWO. For transactions that are predominantly
write actions (50%-100% writes), the converse is true. Both protocols require the same time
to commit transactions when updates comprise 40% of the transaction stream.

Tbese results suggest that for i1 transaction stream that consists of many write actions,
QC-RAWO is a better replication protocol to use. RAWO will allow writes even in the

:30

Mean
Commit time

(msec)

ROWA.
RAWOo

300

275

250

225

200

175

150

o IO 20 :30 40 50 60 70 80 90 100
Average Percent Updates

Four (Spare) Sites

Figure 17: Effed of RC method on commit pe.rfOrlllanCp.

:31

presence of site failures and will commit in less time. Read actions would still block, but
this may not be significant if reads arc sparse in the transaction stream.

4 Conclusion

These experiments show that for certain types of transaction systems adaptability call be
a useful tool for improving performance and availability. Furthermore these expcrimcnts
establish a method for determining a spectrum of values of the five independent variables
(tr<LIlsaction length, percent updates, inter-arrival gap, hot-spot, and transaction granular­
ity) for which adaptability is beneficial ill a distributed transaction processing system. This
method is ba.<;cd on measuring the cost of adaptation in terms of the amount of time re­
quired befoH~ the decrease in throughput during conversion will be made up by the increased
throughput after conversioll. An adaptation is considered beneficial if the system is likely
to maintain approximately th(~ same workload characteristics at least as long as required to
reach the break-even point.

Experiment J shows that the overhead of a careful adaptable design call be kept low, with
respect to the overhcad of a non-adaptable design. Therefore, it is possible to build systems
that have efficient performance characteristics while providing services that are well suited
to the current operating conclitions.

Experiment 11 shows that dynamic switching among algorithms while processing trans­
actions can be clone efficiently. In the concurrency control subsystem of RAID we are able to
switch from 01W concurrency controller to another at a net gaill in performance after just a
few seconds of running with the new concurrency controller. The crucial problems in choos­
ing whether to switch from one algorithm to another are the relative performance of the two
algorithms under existing conditions, tb~ amount of time that the conditions will remain
the same, and the cost of the conversion. Experiment III demonstrates the effectiveness of
adaptability techniques in responding to changing environmental conditions.

Experiment III shows that running algorithms that can increase availability can be ex­
pensive. In a system like RAID, the cost in throughput of running 3PC is not significantly
greater than that of running 2PC. On the other hand, in a system with light-weight trans­
actions, the cost may be as high as 25% greater to mn 3PC. Further, the cost of replication
control algorithms that increase availability may result in as much as a 50% decrease in
throughput. However, in many applications the benefits of increased availability outweigh
reduced performance. Thcse facts suggest that adaptable implementations that can change
between high-perfonlHLllce methods and high-availability methods can serve to increase sys­
tem availability at a relatively low cost in performance.

Experiment IV demonstrates that in systems that may employ a variety of algorithms,
there may be configurations where the algorithms used by oue system component may af­
fect the performance of another. We measured the effect of replication algorithms on the

time required to commit a transaction. The results in this experiment suggest that for a
transaction stream with large ratio of updates, QC-RAWO is a better replication protocol
to use.

An extension of these results would be to automate the decision to adapt to a llew al­
gorithm through the use of an expert system. The expert system could use the resnlts of
experimcllts like these to determine the approximate costs and benefits of dynamic adcLpta­
tioll in a given situation.

3:l

References

[1\ KW]

[BDT8'l)

[BFjj+90]

[FlHG87]

[FlMR87]

[BMR89]

[BMR91]

[FlNS88]

[BR89a]

[BR89b]

Anon et al. A measure of lransaetiOll processlllg power. Datamation,
:ll (7): 112-118, Ap";l 1985.

A. V. Aho, B. W. Kernighan, and P. J. Weinberger. Awk - a pattern scanning
and]J1'Ocessing language. The UNIX Programming Manual.

D. Bitton, D.J. DeWitt, and C. Turbyfil. Benchmarking daLabase systems: a
systematic approach. In Proceedings of the Ninth Tnlc1'1lational Conference on
Very LU1'!}C Databases, OcLobcr 1983.

Bharat Bhargava, Karl Friesen, Abdelsalam RelaI, Srinivasan Jaganuathan,
and John Riedl. Design and implementation of the RAID V2 distributed
database system. Technical Report CSD-TR-962, Purdue University, 1990.
CSD-TR-962.

P. Bemsteill, V. l-ladzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

Bharat Bhargava, Tom Mueller, and John Ried1. Experimental analysis of
layered Ethernet software. In Proceedings of the ACM-IEEE Computer Society
1987 Fall Joint Computer Conference, pages 559-568, Dallas, Texas, OcLobcr
1987.

Bharat Bhargava, Enrique Mafia, and John Riedl. Experimental facility for
kernel extensions to support distributed database systems. Technical Report
CSD-TR-9:30, Purdue University, April 19S9.

Bharat Bhargava, Enrique Mafia, and John Riedl. COllllllunication in the
Raid distributed database system. In Journal oj Compute1' Networks and
ISDN Systems, volume 21, pages 81-92, 1991.

Bharat Bhargava, Paul Noll, and Donna Sabo. An experimental analysis of
replicated copy control during site failure and recovery. In Proceedings oj
the 4th IEEE Data Engineering ConJerence, pages 82-91, Los Angeles, CA,
February 1988.

Bharat Bhargava and John Riedl. A model for adaptable systems for trans­
action processing. IEEE Tmnsaclions on Knowledge and Data Engineering,
1('IJ:'!'l:l-'119, December 1989.

Bharat Bhargava and John Riedl. The RAID distributed database system.
IEEE Transactions on Software Engineering, 16(6):726-736, June 1989.

'l1

[Che88]

[Com84]

[CS84]

[HSB89]

[LCJS87]

[PMI88]

[PW85]

[8+86]

D. R. Cheriton. The v distributed system. Communications of the A CiV!,
31(3):314-333, March 1988.

Douglas Comer. Opemting System Design: The Xinu Approach. Prclltice­
Hall, Inc., 1984.

Michael Carey and Michael Stonebraker. The performance of COllculTcncy

control algorithms for database management systems. In P1'OcccrIing:~ oJ the
Tenth lnlcmalional Conference on Very Large Data Bases, Singapore, August
1984.

A. Helal, ,J. Srinivasan, and B. Bhargava. SETH: a quorum-based replicated
databa..,e system for experimentation with failmes. III Proceedings oj lhe 5th
iEEE Data Engineering Conferencc, pages 200-207, Los Augeles, CA, Febru­
ary 1989.

Barbara Liskov, Dorothy Curtis, Paul Johnson, and Robert ScheirJer. Imple­
mentation of Argus. In Pmceerlin!Js oj lhe l/lh ACM Symposium on Operatillg
Systems P1'inciples, November 1987.

Calton Pu, Henry Massalin, and John Ioannidis. The synthesis kernel. ACiH
Computing Surveys, 1(1):11-32, 1988.

Gerald J. Popek and Bruce J. \¥alker. The LOCUS Distributed System A1'·
chitecture. The MIT Press, 1985.

Alfred Z. Spector et at. The Camelot project. Database Engineering, 9(4),
December 1986.

[TWPWP85] Jr. Thomas W. Page, Matthew .1. Weinstein, and Gerald .1. Popek. Genesis:
A distributed database operating system. In Pmc of ACM-SIGMOD /985
International Conference on Management of Data, pages :374-:387, May 1985.

	Purdue University
	Purdue e-Pubs
	1990

	Adaptability Experiments in the RAID Distributed Database System
	Bharat Bhargava
	Karl Friesen
	Abdelsalam Helal
	John Riedl
	Report Number:

