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Abstract

Adaptable systems can improve reliability and performance by allowing dynamic
reconfiguration. We are conducting a series of experiments on the RAIT distributed
database system to study the cost and performance implications of providing static
and dynamic adaptability, and for increasing the availabilily of data items. Qur stud-
ies of the cost of our adaptable implementation were conducted in the context of the
concurrency controller and the replication controller. The experimentation with dy-
namic adaptability focuses on concurrency conlrol, and our examination of the costs of
providing grealer data availability studies the replication control and atomicity control
subsystems of RAID. We show that for concurrency control and replication control,
adaptable implementalions can be provided at costs comparable to those of special pur-
pose algorithms. We also show that for our concurrency controller dynamic adaptability
can result in performance benefits and that system reconfiguration can be accomplished
dynamically with less cost than stopping the system, performing reconfiguration, and
then restarting the syslem. In some cases, reconfiguration could be performed with-
out aborting any transactions. We demonstrate some costs associated with increasing
availability through replication control methods and use of a three-phase commil proto-
col. A system thal can dynamically change to algorithms that increase availability can
result in a 25-50% performance improvement over systems that continuously employ
the algorithms that provide the better availability. We show that the algorithms se-
lected for replication control can significantly impact the time required for transaction
cominilinendt,.
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1 Introduction

Adaptability and reconfigurability are needed to deal with the changing performance and
reliability requirements of a distributed system. An adaptable system can meet a variety
ol application needs in the short term, and can take advanlage of advances in technology
over the years. There are many aspects of adaptability that have been studied. The is-
sues surrounding adaptable systems include the performance costs of utilizing an adaptable
implementation, the costs of dynamic adaptation, and the problem of deciding when to per-
[orm systemn adaptalion [BR89a). In addition, there are questions regarding the selection
a good mix of algorithms for a given transaction stream, and how to perform dynamic re-
configuration when sile [ailures and network partitions occur. We are conducting scientific
experiments on the RAID distributed database system thal focus on the performance costs
of providing an adaptable implementation, specific costs ol dynamic adaptability and costs
attributable to increased data availability.

The remainder of this section is devoted to a brief description of RAID. RAID is an
experimental distributed database system [BR89b| developed on SUN workstations under
the UNIX operating system. RAID has proven useful in supporling experiments in com-
munication [BMR87, BMRY1}, adaptability [BMRS9], and transaction processing [BR89D].
However, several new features were desired to support extensive experiments in adaptabiliLy
and reliability. To achieve these goals the RAID group has changed and re-implemented the
control flow for transaction processing, and created a second version of the system called
RAID-V2. Version 2 has the same principles and goals as version 1, but takes advantage
of the lessons learned [rom the original RAID implementation to offer improved support for
adaptability and reliability. The details of version 2 can be found in [BFH*90].

There are six major subsystems in RAID-V2: User Interface (U}, Action Driver (AD),
Access Manager (AM), Atomicity Contreller (AC), Concurrency Controller (CC), and Repli-
cation Controller (RC). Figure 1 depicts the latest version of the RAID' system.

The major dillerences between RAID-V1 and RATD-V2 are:

e On-line replication control

Facilities for partial replication

On-line concurrency control

Improved flow of control for adaptability

Use of XDR Lo supporl communicalion in a heterogeneous system

'In the rest of the paper RAID will be used to mean RAID-V2. RAID-V2 will be used only for emphasis
or to improve clarity.
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Figure 1: Communication paths in RAID-V2.

There are three other projects that facilitates experimental work in our laboratory. Mini-
RAID [BNS8Y] allows the prototyping of new ideas prior to their implementation in RAID.
Seth [HSB89] is a system thal supports rescarch in quorum-based replication methods. Push
[BMRA8Y] is a utility that allows users to implement kernel-level services to enhance database
performance. Other academic experimental systems that have been developed include Lo-
cus/Genesis [PW85, TWPWP85], Camelot [S+86], Argus [LCIS87], the V distributed system
[Che88], and the Synthesis kernel [PMI88].

In section 2, we describe our experimental imfrastructure. Tluis includes discussion of
our benchmarks, transaction restart policies, and procedures for running experiments. In
section 3, we report our findings on the costs that must be paid to use an adaptable imple-
mentation using the concurrency controller as an example. We also explore the benefits of
dynamic adaptability in the concurrency controller. Finally, we measure the costs incurred
by using methods which increase the availability of data, comparing diflerent quorum meth-
ods in the replication controller, and different commit protocols in the atomicity controller.
In section 4, we summarize our conclusions and outline future experimental work.

2 Experimental Infrastructure

In this section we describe the experimental mfrastructure of the RAID project at Purdue
University. The Raid laboratory has five Sun 3/50s, and four Sun SparcStation-ls, all with
local disks connected by a 10MDb/s Ethernet. The SparcStations were aquired recently so




some of the reported experiments were done on Sun 3/50s. Measurements are facilitated
by microsecond resolution timers that were oblained from Zytec Corporation. Adaptability
features in RAID make it possible to test different algorithms and implementation techniques
under the same conditions using the same benchmarks. A single independent variable can be
chosen, and can be varied over a range of values while the rest of the system remaius constant.
For instance, many different replication controllers can be tested with the same atomicity
coniroller, concurrency coniroller, and access manager, and under the same workload. This
provides a fair comparison between Lhe performance of the different implementations. In the
{ollowing subsections, we discuss the benchmarks for distributed databases that we developed
by extending the DebitCredit benchmark [A+85]. We outline the action driver simulator
which parametrizes and applies the benchmark Lo the RATD system. We also describe the
transaction restart policy and its ellects on {he stability of experiments. Finally, the RAID
experimental procedure is detailed. '

2.1 Adaptability Features in RAID

Three of the RAID servers have built in adaptability features — Lhe concurrency conlroller
(CC), the replication controller (RC), and the atomicity controller (AC). Each of these servers
implements a number of algorithms and has the mechanism necessary to convert from one
algorithm Lo another.

The CC implements five algorithms for concurrency control: timestamp ordering (T/Q),
two-phase locking (2PL), generic timestamp ordering (gen-T/0), generic locking (gen-2PL)
and generic optimistic (gen-OPT). The first two algorithms are implemented using special-
1zed data struclures, while the last three usc the same general data structures. In the case
ol T/O and gen-T/O, the implementations enforce the samme concurrency control policy, bul
one uses a generic data structure specifically designed for adaptability, while the other uses
an ad hoc data slructure designed specifically for T/O.

The RC also implements several algorithms to perform replication conirol. Among these
are the read-one-write-all (ROWA) algorithm and a quorum consensus (QC} algorithm. In
QC, quorum parameters can be chosen to have a quorum version of ROWA (QC-ROWA), a
quorum version of read-same-as-write (QC-RSW), and a quorum version of read-all-write-one
(RAWOQ). Quorum consensus melhods can model many of the standard replication control
policies, and all such methods have a common structure.

The AC implements centralized two-phase commil (2PC) aud centralized three-phase
commit (3PC). Transactions in the AC are independent of each other, so the selection of a
commit protocol can be performed on a per-transaction basis. In practice, this selection is
done by the RC, which may elect to utilize the AC default protocol.




begin

update Leller <teller-id> by <value>>

update branch <branch-id> by <value>

update accounl <account-id> by <value>

insert history <teller-id> <branch-id> <account-id> <value>
end

Figure 2: The basic DebitCredit transaction.

2.2 Benchmark Data

Several benchmarks for database systems exist [BDT83, A¥85). However, for distributed
database systems there are no well-accepted benclunarks. The data and the workload can
be distributed among the sites in many different ways, especially in systems that support
data replication. Distributed systems vary widely in their model of transactions, including
supporl lor concurrency control, reliability, and replication. Designing general benchmarks
for dilferent sysltems presents a difficult problem for benchmark developers.

DebitCredit Benchmark The DebitCredit (or TP1 or ET1) benchmark is described in
[A185]. DebitCredit is intended to be the simplest realistic transaction processing bench-
mark. There is ouly one [orm of DebitCredit transaction, representing a simple banking
lransaction. This transaction reads and writes a single Luple from each of three relations:
the teller relation, the branch relation, and the account relation. In addilion, a tuple is
appended to a special write-only sequential history file describing the transaction. Figure 2
shows a DebitCredit transaction. The benchmark requires that the entire transaction be
serializable and recoverable [BHG87].

The teller, branch, and account tuples are 100 bytes long, and the history tuples are
50 bytes long. Each teller, branch, and account tuple must contain an integer key and a
fixed-point dollar value. Fach history tuple contains a teller, branch, and account id as well
as Lhe relative dollar value of the transaction.

Extensions to the DebitCredit Benchmark The DebitCredit benchmark is designed
for a varicty ol sizes, with the database size decreasing with the strength of the transaction
processing system. Table 1 summarizes the sizes of the various relations for different trans-
action processing speeds. DebitCredit is designed so the branches and, to a lesser exient the
tellers, form a hot spot in the database. In our experiments we wanted to vary the hot-spot
size, so we chose to make all relations the same size and explicitly choose a hot spot size




Table 1: Sizes of DebitCredit relations.

TPS | branches | tellers accounts
> 10 1000 | 10,000 | 10,000,000
10 100 | 1,000 | 1,000,000
1 10 100 100,000
< 1 1 10 10,000

for cach experiment. Since the experiments were performed on low-end machines we use the
dalabase size for one transaction per second, and make all three relations 100 tuples.

The DebitCredit benchimark specifies that the database system should perform data-entry
from a field-oriented screen. In the laboratory environment, we instead simulate transactions
by randomly generating four values: teller id, account id, brauch id, and relative value.

In order to obtain a greater variety of transaction streams, we extended the DebitCredit
benchmark to support changes i transaction length, percent of accesses that are updates,
and percent of accesses that are to hot-spot items. Each Lransaclion consists of some number
of aclions, each of which accesses a random tuple of onc of the three relations. The access
is either an update of the balance field or a select on the key field. Some percentage of
the updates are directed to a hot-spot of the relation, which is the first [ew tuples of that
relation. Each transaction that performs at least onc updale ends with an insert to the
history relation.

We built a transaction generator to generate a stream of random DebitCredit transactions
based on the [ollowing inpul parameters:

e transactions: number of transactions to generate.

¢ branches: number of Luples in branch relation.

¢ lellers: number of tuples in tellers relation.

¢ accounis: number of tuples 11 accounts relation.

e average length: average number of actions in a transaction.

e probability long: probability thal average length is used for a particular transaction.
Otherwise one-fifth average length will be used. The default for the probability is one,
which creates a unimodal distribution around average length. Transaction length is a
normal distribution, with standard deviation 1/3 the length.

e update percent: percent of the actions that are updates rather than just selects.




e hot-spot size percent: percent of the database comprising the hot-spot. Each action
is checked to see if it should be a hot-spot action. If so, it accesses tuples number
[0, ..., hot-spot size percent # n_tuples] for the chosen relation. Note that all relations
have the same hot-spot size.

¢ hot-spot access percent: the chance that an action on a relation will access Lhe hot-spol
of that relation.

The transaction length is bimodal, in an attempt to reflect real systems with a mix of large
and small transactions. The standard deviation was chosen so that zero is three standard
devialions away from the average, to decrease the number of times the normal distribution
has to be truncated Lo aveid zero-length transactions. The hot-spol is over a {ixed number
of Ltuples across Lhree relations. Since RAID does Luple-level locking, this is the same as
having a single hot-spol in one ol Lhe relations.

This modified version of the DebitCredit benchmark is no longer restricted to a real
banking application as in the original benchmark. However, it uses the same relations and
the same types of actions as the original benchmark, and has the advantage of supporting
trausaction streams with heterogeneous characteristics.

Data Distribution RAID supports a wide range of distributions of data among sites, with
differing transaction processing characteristics. Since the benchmarks are created for single-
site database systems we measured a variety of different data and workload distributions.

The key in the data distribution is the degree of replication. The range is from full
replication, m which each site has a copy of all data, Lo no replication, in which only one
copy of each item is shared among the siles. Most real sysltems are likely to use something
in belween, balancing the need to have copies in case of site failures with the performance
cost of performing operations on multiple sites. In our experiments we used both partial and
full replication.

2.3 Action Driver Simulator

The AD simulator is used —in place of the RAID AD- to provide an easily controllable
workload. It processes transactions in a special benchmark language. The commands in
the language all consist of a single line starting with a verb and ending with a number of
arguments. The verbs are begin, end, update, select, insert, update-rel, and delete.
Figure 3 shows the arguments for the verbs. Each verb except for begin and end takes a
database id and a relation id as its first two arguments, so these are left out of the table.
The meaning of the verbs are:

e begin: begin a transaction.




Verb arguments

update | <select col> <select key> <update col> <update value>
insert | <new tuple value>

delete | <select col> <select key>

select | <select col> <select key>

begin | none

end none

Figure 3: Sitmple benchimarking language

e end: begin commit processing for a transaction.

e update: reads tuples from the database that match a key value in a particular columm.
It then changes the value of the attributes of those tuples in some other column. update
and update-rel are only supported for integer and float columns.

» update-rel: (relative update) same as update, except that the valie is added to the
attribute i the update column rather than just replacing the old value.

& insert: insert a tuple into the relation.

e delete: retrieve all tuples from a relation that match a key value in a particular
column, and delete them.

e select: retrieve all tuples from a relation that match a key value in a particular
column.

Transactions are specified by enclosing a number of other actions in a begin/end pair.
All of the transactions from the DebitCredit benchmark can be expressed in this language.

The AD simulator accepts a parameter g that specifies the inter-arrival rate of the trans-
actions. S is used as the average for an exponential random variable. When an arrival
occurs the AD parses the next transaction from the input file, creates an AD Lransaclion
data structure for the new transaction, and begins executing it by issuing commands to the
RC. When a transaction completes, statistics are compiled on its execution profile and its
data structure is returned to a common pool. When the fle is emply the AD simulator waits
for the active transactions to complete, and prints its statislics.

The AD runs a timer for each transaction. It maintains a delta list? of alarms of various
types. Depending on the state of the transaction, the tinmter can be of type life-over, restart,

2A dclta list is a list of times in increasing distance [rom the present [C'om84]. The time for an element
tells how long after the preceding element an alarm should eccur.




or ignore. Life-over Limeouts cause a transaction to abort and restart®. These timeouts arc
used to resolve deadlocks and to handle lost messages. Restart timeouts cause a previously
aborted transaction to restart. Ignore timeouts are used to safely disable the alarm that is
currently active. Removing the alarm from the head of the alarm queue is not safe, since
the alarm signal may already be on its way. Arrivals are also handled with special alarms
of type arrival that are not associated with a transaction. The life-over alarms represent a
transaction timeout, presumably because of deadlock or lost messages. The timeout interval
is a4 constant number of milliseconds per action, chosen to maximize system throughput.

Control Relation Some of the experiments require that algorithms be changed dynami-
cally while RAID is processing transactions. To support dynamic adaptability, each RAID
database has a special control relation. This relation contains one tuple for each site, con-
Laining one column {or cach server type. Each attribute is an integer representing the stale
of a parlicular server on a particular site. The interpretation of the integer is different for
each server Lype, bul in general the integer specifies the algorithm being executed by the
server. The control relation is write-only?, and is updated by special control transactions
issued by the AD. Iach of these control transaclions accesses only the control relation.

The control transactions are processed like normal transactions until they are committed.
At this point, each server checks to see if the transaction is a control transaction for that
server. If so, the server selects the integer from the columu corresponding to the server’s
logical site id, and interprets it independently. The control relation is fully replicated, and is
set up by the replication controller so thal wriles occur on all sites. Since control transactions
are serialized just like other transactions, there is automatic protection against multiple
operators introducing an inconsistent state. Furthermore, control transactions synchronize
Lhe adaplation i serialization order.

Coutrol transaclions originate in the AD simulator by normal update transactions in
the input file that use the tuple id instead of a key to selecl tuples. Usually each control
transaction writes all tuples in the control relation, changing the value for one server on all
sites.

2.4 Open versus Closed Experiments

The AD simulator is set up to run two basic types of experiments. In open experiments the
transaction inter-arrival gap is varied to control the system load. In closed experiments the
multiprogramming level is fixed. When one transaction completes another is started. Open
experiments are more representative of the type of load found in on-line transaction systems.

31T the transaction is already in commitment it may not be abortable. In this case, the AC takes the
aborl request as a timeout and retries the commit request for the transaction.

4 Actually, the relation can be read to learn the state of the server during debugging, but its value is not
used by the servers.
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Arrivals are separated by an exponential random variable, represenling, for instance, arrivals
of customers to a teller. Actual applications probably [all somcwhere in between these
models, behaving like an open system when the load is low, and behaving like a closed
system when the load is high.

We ran a series of open and closed experiments on concurrency controller and compared
the mformation returned, to the accuracy of the confidence intervals. The results of the
closed experiments were consistently easier to understand and iuterpret than the results of
the open experiments. The problem is that at a high degree of concurrency an open system
is very unstable, and at a low degree of concurrency the choice of concurrency controller does
not matter since there are very few concurrency conflicts [C584]. In summary, it is difficult
to maintain a high degree of concurrency over a range of independent variable values in an
open experiment, which makes it difficult Lo gather experimentally meaningful results.

QOur experiments, described 1n section 3 are performed on a closed system. For the
concurrency control experiments using a closed system makes maintaining a high degree
of multi-programming easier, which allows a better exploration of the differences hetween
concurrency controllers over a wide range of parameter values. For the atomicity control
and replication conlrol expernnents using a closed system makes it casicr to maintain a con-
stant low multi-programming level without running as many pilol experiments o eslablish
a reasonable inter-arrival gap.

2.5 Experimentation with Restart Policies

In most applications, the successlul completion of transactions is required. In such applica-
tions, transactions aborted by the transaction manager must be retried uniil they succeed.
In order to model such behavior in our experimenls, Lransaclions aborted by Lhe system were
restarted by the AD.

Performance 1s sensitive Lo Lthe restart policy used, since restart occurs most often during
high periods of conllict, and restarting Lransactions raiscs Lhe degree of multiprogramming.
Also, if transactions are restarted too quickly they are likely to again conflict with the same
transactions that caused the original restart. In RAID we delay restarts to improve the
chance that the conditions that caused the restart will have changed when Lhe transaclion
restarls.

We siudied cight different restart policies based on three binary attributes: rolling average
versus total average response time for the mean restart delay, exponential random versus
constant delay, and ethernet backofP® versus non-increasing backoff. The total average used
the average response time since the system was started as the mean restarl delay. By
contrast, rolling average estimated the average response time of the last few Lransaclions.
Iixponential ransom delay used the average response time as the mean of an exponential

®We call this ethernct backoff rather than exponential backoff to avoid the name conflict with exponential
random.
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random variable used to compute Lhe aclual restart delay. Constant delay uses the average
response time dirvectly. The ethernet backoff policy doubles the restart delay after each time
an individual transaction is aborted.

We found that using the combination of non-increasing backoff, rolling average and ex-
ponential random delay methods resulted in a restart policy that was responsive and that
maintained system stability. This is the restart policy that we used for all of our other
experiments.

2.6 RAID Experimental Procedure

All experiments are run early in the morning, when network activity is low. All of the
RAID machines are firsi rebooted to ensure that the experiments will run on a “clean”
system. Shortly after a machine reboots a user cron® job runs a shell script” that sets up
the experiments. This shell script reads a special directory and executes any benchmark files
there. Each line of a benchmark file represents a complete invocation of RAID to process
transactions from a temporary transaction file. After a RAID instance terminates, the data
from the run is collected and stored. TFigure 4 shows the logic of Lhe experiment script,
figure 5 shows the logic of the script that runs a single experiment, figure 6 shows the logic
of the script that runs dynamic adaptability experiments, and figure 7 shows the logic of Lhe
script that runs a single instance of RAID.

The raw data is processed cach morning with an AWIC program [AKW]. This program
scans Lhe direclory where Lthe data files are stored, building tables of information containing
counts ol all messages sent between the servers. These tables are checked by the program
for consistency to detect anomalous behavior, such as lost messages or excessive numbers of
aborts. I"inally, one line is printed for each experiment. This line summarizes the perfor-
mance characteristics of the system as a whole and the interesting statistics for each of the
RAID subsystems.

All I/O activity during an experiment is directed to the local disk. Such activity con-
sists primarily of database accesses and updates, and writes to the transaction log. Pilot
experiments in which some data were directed to a shared file server were successful when
only about half the machines (4-5) were involved in experiments, but had poor confidence
intervals when more machines were active. Fach server also keeps a log of statistics which is
written during system startup and system termination. Server logs do not impact transaction
processing performance and therefore are directed to the file server.

On the Sun 3/50s care was taken to make sure that the screen was blanked when the
experiments were run. The video monitor uses the same bus as the CPU to access memory,
resulting in approximately a 25% slowdown when the screen is not blanked.

8Cron is a Unix service thatl arranges for processes to be invoked al specified times.
A shell script is a program in the Unix comnmand interpreter’s (the shell’s) language.
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Try to start an oracle on the designated oracle site. If Lthere already is an oracle on
that site, the new oracle will find it and terminate during startup.

Unmount all remole-mounted file systems. This step reduces the possibility of remote
machine failures affecting the experiments.

Mount the two file systems needed for the experiments.

Find the benchmark directory for this machine on this day. If it is empty or non-
existent, terminate.

Look for an initialization file (name “Initialize”) in the benchmark directory. If there
1s such a file, run it. These files imtialize the database, usually by running dbreset to
clear all relations and then loading freshly generated tuples.

I'or each benchmark script in the benchmark directory (recognized as a file name with

a “.bm” suffix):

— For each line in the file:

* nvoke the DebitCredit scripl with Lhe specified arguments.

Re-mount the remote file systems.

Figure 4: Start Experiment Scripl Logic

Generate a transaction benchmark according to the parameters of the experiment,
using the transaction program.

Write a command file for the AD simulator Lhat sets its parameters (arrival gap,
timeout, maximum concurrency, restart backofl method, and open/closed experiment

type).
Invoke the RAID script, handing it additional parameters and the name of the com-

mand file for the AD simulator.

Figure 5: DebitCredit Script Logic
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Generate a short transaction benchmark according to Llie parameters of the experiment,
using the transaction program.

Prepend a control transaction to convert to the initial concurency control method to
the transaction benchmark file.

Append a control transaction Lo converl o the final concurrency control method to
the transaction benchmark file.

Append another short transaction benchmark to the end of the transaction benchmarl
file to keep Lhe load steady while conversion is occuring.

Wrile a command file for the AD simulator thal sets its parameters.

Invoke the RAID script, handing it additional parameters and the name of the com-
mand file for the AD simulator.

Figure 6: Converting DebitCredit Script Logic

Choose a unique RAID inslance number for this experiment.
(Clean oracle entries for the chosen RAID instance.
Start the RAID instance.

Busy-wait until two consecutive oracle list commands report the same number of regis-
tered servers. (An alternative would be to check the configuration file for the database
to find oul how many siles are involved.)

Check the server log files to make sure they all intialized correctly.
Run the AD simulator using the specified benchmark transactions.
Terminale Lhe RATD instance, and clean up the oracle.

Move the server log files to an archive directory, timestamping them with the date and
time of the experiment.

Figure 7: RAID Scriptl Logic
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We scanned the system log files to learn about automatic system activity thal might
disturb the experiments. The experiments were scheduled to avoid nightly and weekly dis-
tribution of software to the workstations, and to be after the nightly file system backups.

Fach experiment involved running 250 transactions on the system. 250 was chosen as a
reasonable number thal yielded approximately steady-state measurements despite Lhe start-
up and tail-off times. There was litlle difference between running 250 transactions and
running 300 transaclions. We did not run higher numbers of transactions to economize on
computing resources.

Experiments were run on the extended DebitCredit benchmark using fGve independent
variables:

e transaction length: the number of actions in a transaction.
e fraction updates: the fraction of the actions that are writes.

s inter-arrival gap: the delay between the arrival of one transaction and the arrival of
the next for open experiments.

multi-programming level: the number of transactions running at a given time.
¢ hol-spol access [raction: the [raclion ol accesses thal access the hol-spol.
e hot-spot size fraction: the fraction of the database that comprises the hot-spot.

For cach of these independent variables, we measured the performance of the system in terms
of the dependent variable throughput, expressed in transactions per second.

Unless otherwise indicated, experiments were run on a system that nsed a timestamp
order concurrency coutroller, a read-one-wrile-all replication controller, and a two-phase
commit protocol. All experiments are “closed” with a fixed degree of multiprogramming.
The degree of multiprogramming was set to a small number {3) to minimize serialization
conflicts. Aborted transactions were restarted after a delay that was computed using an
exponential random distribution with the rolling average of transaction response time as the
mean. In each experiment the workload was provided by a single AD running on one of
the sites. Multiple workload experiments would also be interesting, butl are more dilficult to
synchronize and parameterize.

3 Experiments in Adaptability

This section presents the details of our experiments in distributed systems adaptability. We
describe four experiments on adaptability. The first experiment measures the overhead of an
adaptable implementation in the concurrency controller and replication controller subsys-
tems of RAID. The second experiment identifies a set of conditions under which concurrency




control adaptation should be performed. The third experiment measures the cost ol repli-
cation and atomicity control methods that increase availability. The fourth experiment
explores the performance impact of the algorithm employed by the replication controller on
the atomicity controller. The choice of servers for a given experimenl was based on the
current infrastructure available i RAID and the potential to obtain meaningful data.

3.1 Experiment I: Cost of Adaptable Implementation
3.1.1 Statement of The Problem

An adaptable design is more complicated than a non-adaptable design. This experiment
measures the difference in performance between the adaptable and the non-adaptable im-
plementations.

3.1.2 Procedure

We conducted this experiment on the CC and the RC subsystems of RAID. Of the five concur-
rency controtlers implemented in the RAID CC, two are implementations of the timestamp
order (T/0) policy. These implementations enforce the same concurrency control policy, but
one uses a generic data structure specifically designed for adaptability, while the other uses
an ad hoc data struclure designed specifically for T/O.

Similarly, the replication controller can use a non-adaptable Read-One-Write-All (ROWA)
policy, or a Read-One-Write-All policy based on quorum consensus (QC-ROWA).

To compare the cost of using adaptable implementations, we measured the non-adaptable
T/O algorithm against the adaptable T/0O method varying the size of the database hot-
spot. The experiment was run on a single-site database with a small hot-spot to produce a
significant degree of conflict.

For replication control, we compared the performance of ROWA and QC-ROWA varying
the proportions of read and write actions. A four site database was used with the branch
and teller relations replicated on three sites each, the account relation replicated on all four
sites, and the history relation replicated on two sites. The copies were arranged so that each
site contained three copies.

3.1.3 Data

Figure 8 shows the throughput for the two concurrency controllers as the size of the hot
spot increases. IFigure 9 shows the respense time for the two replication control methods as
update percent increases. The 90% confidence intervals for bolh sets of data were less than
10% of the data values. All data shown is from systems running on Sun 3/50s.

16



Throughput
(T/sec)

T/O »
gen-1T/0 A
gen-2PL @
gen-OPT x

1 12 13 1 s 16 17 18 19 20
Hot Spol Size (Percent)

Figure 8: Performance of Adaptable Concurrency Control Implementation

17




2000

4000 —

Response
Time
{ms)

QUROWA o |
QCRSW o 3000
ROWA @

2000 —

I I I I | i I I [
16 20 30 40 50 60 70O 80 90

Update Percent
Multiprogramming Level 3

Figure 9: Quorum Consensus Replication Control Performance

18

100




3.1.4 Discussion

To the limits of the experiment there were no discernible differences in performance between
the adaptable implementations and the specialized implementation. The reason is that the
differences in execution time between the two algorithms are small in comparison to Lhe
execulion time required to process a transaction. The algorithm selected has much more
impact on performance than different implementations and execution speed of the same
algorithm.

For the replication control data, we compare the response time for the two replicalion
methods, since there was little difference in the throughput. Once again, we observe thal the
cost of the adaptable method is nol significantly different from the cost of the non-adaplable
method. In the case of concurrency control and replication control, a carefully designed
adaptable implementation can perform as well as a non-adaplable implementation.

3.2 Experiment II: Cost and Benefit of Dynamic Adaptability
3.2.1 Statement of The Problem

Dynamic adaptability allows the operator of a system to change [rom onec algorithm to
another while the system is running. This experiment examines Lhe cosl of adaptlation to
determine the effectiveness of particular dynamic adaptations.

3.2.2 Procedure

This experiment was performed on the CC server. The item-based generic state described in
[BR89a] was used to implement three concurrency controllers: generic 2PL, generic T/O, and
generic OPT. Then four conversion routines were written to dynamically convert from generic
2PL to and from each of generic T/O and generic OPT, while preserving correctness. In order
to preserve correctness aborts are sometimes necessary. A special benchmark was set up to
Lest these conversion routines. This benchmark first ran a control transaction to convert to
Lhe initial concurrency controller, then ran 50 transactions to get the sysiem Lo steady slale,
and then ran another conlrol transaction to convert to the final concurrency controller.
Finally 20 more transactions were run to ensure that the second conlrol transaction ran
under normal conditions. The multiprogramming level was sel to 20 {for these experiments
o increase the number of transactions to be checked for abort. The number of aborts
required during adaptation are reported {o represent the cost of dynamic adaptation.

Measuring only aborts excludes the computation cost of the actual conversion from one
method to another. In all methods except 2PL to OPT {which has no conversion cost) this
cosl is proportional to the number of elements of the read sets of aclive transactions. In
RAID this cosl i1s a small fraction of transaction processing Lime.
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The benefit, on the other hand, is sustained over time, and is in the form of increased
throughput from running a better algorithm for the current transaction mix. A measure of
the net gain for dynamic adaptlability i1s the amount of time required to make up for the
cost, assuming the transaction characteristics remain the same. Thus, we propose that the
czpected break-cven time be defined by

aborts during conversion

abort rate,q — abort rategen

The numerator in tlhs expression expresses Lhe cost ol Lhe conversion in aborts. The
denominator has units aborts/second, and expresses the benefit of runming the new algo-
rithm. The units of the resull are seconds, and it expresses the amount of Lime Lthe system
must run with the new method and the same transaction processing conditions to recover
the cost of conversion. An alternative expression for net cost of abort is to convert the cost
of conversion to throughput, and express the benefit in terms of the increased throughput
of the system after conversion:

_lost throughpnt during conversion

throughput, ., — throughput 4

ncw

Here throughput is expressed in transactions per second, and lost throughput during
conversion is computed by estimating the throughput cost of the aborts. One such estimate
is Lo sublracl the number of whole lransaction equivalents thal were aborted. For instance,
oue Lransaction 3 complele and one transaction £ complete would be combined to make one
transaction equivalent.

In general, the former measure is easier to compute since the number of aborts during
conversion is readily available, but the latter measure 1s a more accurate measure of the
actual estimate of the conversion cost, especially if a good estimate of the number of whole
transaction equivalents is available.

We measured the number of aborts required for each type of conversion over a range
henchmarks under a high degree of multiprogramming. We measure the throughput of the
old and new methods for each type of conversion. We compute the net cost of the conversion,

in seconcls.

3.2.3 Data

The number of aborts required for dynamic conversion under a multi-programming level of
20, for a range of hot spot sizes are shown in figure 10. The relative confidence intervals for
this data are very large (in some cases as great as 100% of the data value), so the data should
not be interpreted as good indicators of the number of aborls needed [or conversion for each
hot-spot size. However, in no case was more than three aborts needed during conversion,
and for every hot-spot size the average number of aborts was no greater than iwo. Note
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that converting from 2PL to OPT and 2PL to T/O never requires aborting a transaction.
The 2PL 1o OPT case never requires an abort hecause OPT uses Lhe same rules as 2PL,
but applies them al the end ol the transaction. The 2PL to T/O case never requires an
abort in theory because committed transactions can be implicitly renumbered to have earlier
timestamps than all uncommitted transactions, thus avoiding all out-of-order timestamp
conflicts. I'igure 11 shows similar data for a two-site RAID instance, with transaction length
as the independent variable. All the coucurrency controllers were converted to the new
method in a single control transaction. Again Lhe data is not consistent, but the maximum
number of aborts was eight, and the average is never much more than five aborls.

Figure 12 shows the net cost of dynamic conversion from generic 2PL to generic OPT,
assuming Lhat Lwo transactions are aborled during conversion and that the multiprogram-
ming level after conversion is 10. We use the throughput-based method of computing net
conversion cost, and assume that each aborted {ransaction was halfway completed.

3.2.4 Discussion

In order {o invoke dynamic adaptation, a system manager mnst have some measure of the
benefit of adaptability versus the cost. In the case of the generic state adaptability used in
the previous experiment the cost is instantaneous, and is measured in number of aborted
transactions. A system manager reading figure 12 would look up the current hot-spot size and
read the number of seconds the system would have to stay at this hot-spot size hefore the cost
of converting to OPT would be regained. In this case he/she would be very likely Lo perform
the conversion, since less than one second is required to make up the lost transactions.

In all cases the cost of conversion was relatively low in number of aborts. This is to be
expected because only active transactions are candidates for abort using the generic state
conversion method, so even at a degree of multiprogramming of 20 there are at most 20
transactions that could be aborted. Note that the number of aborts required for generic
state adaptability is exactly the same as the number that would be required for converting
state adaptability. Converting state adaptability would have a higher computation cost, but
the difference is unlikely to be as high as even one transaction execution time. Estimating
one extra lost transaction of cost during conversion still yields a net cost of less than Lwo
seconds for conversion. Suffix-sufficient state is harder to estimate, since conversion is not
mstantaneous. However, the total cost of the conversion in that case is reduced through-
put for one transaction length period. Except for systems with very long transactions, or
for conversions between two very differenl concurrency controllers the cosi of the reduced
throughput is likely to be less than the cost of the aborted transactions under generic state
adaptability.

Dynamic adaplability of concurrency control is inexpensive. Even under a heavy load
the cost can be amortized in less than one second if the new algorithm is a significant
improvement over the old algorithm.
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3.3 Experiment III: Cost Attributable to Increased Availability
3.3.1 Statement of The Problem

Many replication control methods and commil protocols provide increased availability at the
cost of performance. This experiment comparcs Lhe replication method read-onc-write-all
(ROWA) against read-same-as-write (RSW) method. We also examine the performance of
two-phase commit (2PC) and three-phase commit {(3PC).

3.3.2 Procedure

Ior replication control, we compared the performance ol QC-ROWA and QC-RSW, varying
the proportions of read and write actions. A four site database was used with the branch
and leller relations replicaled on three silcs each, the account relation replicated ou all four
sites, and the history relaliou replicated ou Lwo siles. The copies were arranged so Lhal eacl
sile conlained three copics.

To explore the cost of 2PC versus 3PC, a five site, fully replicated inslance of the standard
DebitCredit database was used. In the first data set, the proportion of updales in the
transaction stream was varied. In the second data set, the average transaction lenglh was
Llie independent variable. Since the nuimber of senialization conflicts increase with transaction
length, the size of the database hot-spot was increased to 40% to minimize such conflicts.

3.3.3 Data
Figure 9 compares the QC-ROWA and QC-RSW protocols. 90% confidence intervals for

both experiments were less than 10% of the data values.

Figure 13 shows the throughput for 2PC and 3PC on a five-site RAID system, runuing
on Sun 3/50s. Figure 14 shows the average commit time [or the series of experiments. 90%
confidence intervals for both figures are less than 10% of the data values.

Figures 15 and 16 show the throughput and commil Limes for the same five site RAID
system with length as the independent variable.

3.3.4 Discussion

The QC-ROWA replication method consistently performed better than the QC-RSW method
in some cases as much as 25% better. In the cases where the percentage of update actions
is low, the differences between the two methods are not as significant. Most of the cost of
QC-RSW is incurred by the additional reads ihat il must perform to ensure an increase in
data availability.

The difference in throughput for the AC was much less pronounced. Although 3PC con-
sistently measured slightly higher, the difference between individual points is not statistically
significant. The difference in commit time, reflecting the AC cost alone, is more pronounced,



Throughpul
(T /sec)

2PC »
3PC o

0 10 20 30 40 50 60 70 80 90 100
Average Percent Updates
Five Sites

Figure 13: Atomicity Control Throughput for 5-Site RAID, on Sun 3/50s

26



A
;N LT
A / A
N
P ~
00 | /
500 4
450 -~
Mean
Comimit
Time 400 —
(msec)
2PC »
3PCo 3707
300 —
250 —
200 —

I I I I I I I I [ i
0 10 20 30 40 50 60 70 80 90 100

Average Percent Updales
[ive Sites

Figure 14: Atomicity Control Commit Time for 5-Site RAID, on Sun 3/50s

27




Throughput 2.5 -
(T /sec)

2PC »
3PC o 2 —

I I I I I i I i I I
| 2 3 4 ) 6 7 8 9 10

Average Transaction Length
Five Siles

Figure 15: Atomicily Control Throughput for 5-Site RAID, on Sun 3/50s

28



800 —
7004 & -
~
\
N
M \
ean _
Commit OO iU
Time \ P -
{msec) \ & e
\ P
2PC L
3PCo 500
400 —
300 —

[ I | [ [ | [ [ [ [
1 2 3 4 i) 6 7 8 9 10
Average Transaction Length
Five Sites

Figure 16: Atomicity Control Commit Time for 5-Site RAID, on Sun 3/50s

29




with 3PC requiring 30% to 50% more time than 2PC. The lack of effect on throughput of the
commit protocol reflects Lhe relatively low contribution of distributed commitment to the
total transaction processing time. Systems that have lower transaction processing costs than
RAID will see a more significant effect on total throughput of running the 3PC protocol.

In summary, there is some advantage that could be accrued by a system that can utilize
more efficient methods (such as ROWA or 2PC) during normal transaction processing and
can still provide increased availability when it is needed. Systems with relalively heavy-
weight transactions, like RAID, can use 3PC all the time for increased availability at little
cost. Systems with lighter-weight transactions may wish to build an adaptable commit
protocol thal can change belween 2PC and 3PC as needed.

3.4 Experiment IV: Effect of Replication Algorithms on Commit
Performance

3.4.1 Statement of The Problem

[n systems that may employ a variety of algorithms, there may be configurations where the
algorithms used by one subsystem may affect the performance of anolher subsystem. This
experiment measures the effect of replication algorithms on the Lime required to commit a
transaction.

3.4.2 Procedure
We ran ROWA and QC-RAWOQ (read-all-write-one) on a four site, fully replicated database,

varying the fraction of actions that were updates. A two-phase commit protocol was used by
the AC, and generic locking was used by the CC. For both the ROWA and the QC-RAWO

cascs, we measured the average commit time spent by the AC server.

3.4.3 Data

Figure 17 shows the average commit time for the two replication conirol methods.

3.4.4 Discussion

For transactions where read actions dominate (60%-100% reads), the ROWA protocol re-
quires less time Lo commit than the QC-RAWQ. For transactions that are predominantly
write actions (50%-100% writes), the converse is true. Both protocols require the same time
to commit transactions when updates comprise 40% of the transaction stream.

These results suggest that for a transaction stream that consists of many write actions,
QC-RAWO is a better replication protocol to use. RAWO will allow writes even in the
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presence of site failures and will commit in less time. Read actions would still block, but
this may not be significant if reads are sparse in the transaction stream.

4 Conclusion

These experiments show thal lor certain types of transaction systems adaplability can be
a useful tool for improving performance and availability. Turthermore these experiments
establish a method for determining a spectrum of values of the five independent variables
(transaction length, percent updates, inter-arrival gap, hot-spot, and transaction granular-
ily) for which adaptability is beneficial in a distributed transaction processing system. This
method is based on measuring the cost of adaptation in terms of the amount of time re-
quired before the decrease in throughput during conversion will be made up by the increased
throughput after conversion. An adaptation is considered beneficial if the system is likely
to maintain approximately the saimme workload characteristics at least as long as required to
reach the break-cven point.

Experiment T shows that the overhead of a careful adaptable design can be kepl low, with
respect to the overhiead of a non-adaptable design. Therefore, it is possible to buld systems
that have efficient performance characteristics while providing services that are well suited
to the current operating conditions.

Experiment 1l shows that dynamic switching among algorithms while processing trans-
actious can be done efficiently. In the concurrency control subsystem of RAID we are able to
switch [rom one concurrency controller to another al a nel gain in performance after just a
few seconds of running with the new concurrency coutroller. The crucial problems in choos-
ing whether to switch from one algoritlnin to another are the relative performance of the two
algorithms under existing conditions, the amount of time that the conditions will remain
the same, and the cost of the conversion. Experiment I1I demonstrates the effectiveness of
adaptability techniques in respondiug lo changing environmental conditions.

[Experiment III shows that running algorithms that can increase availability can be ex-
pensive. In a system like RAID, the cost in throughput of running 3PC is not significanily
greater than that of running 2PC. On the other hand, in a system with light-weight trans-
actions, the cost may be as high as 25% greater to run 3PC. Further, the cost of replication
conirol algorithms that increase availability may result in as much as a 50% decrease in
throughput. However, in many applications the benefits of increased availability outweigh
reduced performance. These facts suggest that adaptable implementations that can change
between high-performance methods and high-availability methods can serve to increase sys-
temn availability at a relatively low cost in performance.

Experiment IV demonstirates that in systems that may employ a variety of algorithms,
there may be configurations where the algorithms used by oune system component may af-
fect the performance of another. We measured the effect of replicalion algorithms on the
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time required lo commit a transaction. The results in Lhis experiment suggest that for a
transaction stream with large ratio of updates, QC-RAWOQ is a better replication protocol
to use.

An extension of these results would be to automale the decision to adapt Lo a new al-
goritlim through the use of an expert system. The experl system could use the resulls of
experimeints like these to determine the approximate cosls and benefits of dynamic adapla-
tion in a given situation.
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